高考数学中最容易丢分的2大板块,避开陷阱才能得高分!
2019-03-12 14:07:54 浏览:1337
23个最易失分知识点汇总
1.遗忘空集致误
由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2.忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3.混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4.充分条件、必要条件颠倒致误
对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
5.“或”“且”“非”理解不准致误
命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
6.函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
7.判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
8.函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
9.三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;
但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
10.忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
11.向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
12.an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
13.对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
14.数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。
在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
15.不等式恒成立问题致误
解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。通过最值产生结论。应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。
16.忽视三视图中的实、虚线致误
三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。
17.对折叠与展开问题认识不清致误
折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化。
18.点、线、面位置关系不清致误
关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:
一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致。
19.忽视斜率不存在致误
在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在。如果忽略k1,k2不存在的情况,就会导致错解。这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案。
对于解决两直线垂直的相关问题时也有类似的情况。利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在。利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论。
20.两个计数原理不清致误
分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决。
对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。
21.混淆项系数与二项式系数致误
在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,...,n项的二项式系数分别是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。而项的系数是二项式系数与其他数字因数的积。
22、条件结构对条件判断不准致误
条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值。
23.复数的概念不清致
对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数。解决复数概念类试题要仔细区分以上概念差别,防止出错。另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错。
50个易混易错点汇总
一、集合与函数
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?
11.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论
二、不等式
12.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
13.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
14.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
15.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
三、数列
16.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
17.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。
18.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
19.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四、三角函数
20.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
21.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
22.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
23.函数的图象的平移,方程的平移易混:
(1)函数的图象的平移为“左+右-,上+下-”。
(2)方程表示的图形的平移为“左+右-,上-下+”。
24.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
25.正弦定理时易忘比值还等于2R。
五、平面向量
26.数0有区别,0的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
27.数量积与两个实数乘积的区别:
在实数中:若a≠0,且ab=0,则b=0,但在向量的数量积中,若a≠0,且a•b=0,不能推出b=0。
28.a•b<0是向量和向量夹角为钝角的必要而不充分条件。
六、解析几何
29.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
30.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
31.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
32.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
33.通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
34.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
35.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
36.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见。
37.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
38.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
39.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
40.两条异面直线所成的角的范围:0°≤α≤90°
直线与平面所成的角的范围:0°≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
41.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
42.棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
43.球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
八、排列、组合和概率
44.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。
45.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。)
46.求分布列的解答题你能把步骤写全吗?
47.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
九、导数及其应用
48.在点处可导的定义你还记得吗?它的几何意义和物理意义分别是什么?利用导数可解决哪些问题?具体步骤还记得吗?
49.你会用“在其定义域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。”解决有关函数的单调性问题吗?
50.你知道“函数在点处可导”是“函数在点处连续”的什么条件吗?